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FOREWORD

The Software Engineering Laboratory (SEL) is an organization

sponsored by the National Aeronautics and Space Administra-

tion/Goddard Space Flight Center (NASA/GSFC) and created for

the purpose of investigating the effectiveness of software

engineering technologies when applied to the development of

applications software. The SEL was created in 1977 and has

three primary organizational members:

NASA/GSFC, Systems Development Branch

The University of Maryland, Computer Sciences Department

Computer Sciences Corporation, Systems Development

Operation

The goals of the SEL are (1) to understand the software

development process in the GSFC environment; (2) to measure

the effect of various methodologies, tools, and models on

this process; and (3) to identify and then to apply success-

ful development practices. The activities, findings, and

recommendations of the SEL are recorded in the Software

Engineering Laboratory Series, a continuing series of re-

ports that includes this document.

The authors of this document are

Kelvin L. Quimby (Computer Sciences Corporation)

Linda Esker (Computer Sciences Corporation)

Single copies of this document can be obtained by writing to

Systems Development Branch
Code 552

Goddard Space Flight Center
Greenbelt, Maryland 20771
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The software engineering issues related to the use of the

Ada programmgng language during the design phase of an Ada

project are analyzed. Discussion shows how an evolving

understanding of these issues is reflected in the design

processes of three _generations _ of Ada projects.
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EXECUTIVE SUMMARY

During the past 4 years, the National Aeronautics and Space

Administration/Goddard Space Flight Center (NASA/GSFC) with

support from Computer Sciences Corporation (CSC) has been

using the Ada programming language in five different proj-

ects. The first two of these projects, the Flight Dynamics

Analysis System (FDAS) and the Gamma Ray Observatory (GRO)

Dynamics Simulator in Ada (GRODY), were research-oriented

projects. The three Ada projects that followed are produc-

tion satellite simulation systems for use in support of ac-

tual missions. The Geostationary Operational Environmental

Satellite-I (GOES-I) will be supported by the GOES-I Dynamics

Simulator (GOADA) and the GOES-I Telemetry Simulator

(GOESIM). The Upper Atmosphere Research Satellite (UARS)

will be supported by the UARS Telemetry Simulator (_ARSTELS).

This report analyzes the software engineering issues related

to the use of the Ada programming language during the design

phase of an Ada project and discusses how an evolving Under-

standing of these issues is reflected in the design proc-

esses of three "generations" of Ada projects: FDAS and

GRODY, GOADA and GOESIM, and UARSTELS. The following points

summarize this analysis:

• The GRODY project introduced objectioriented design

and the entity-diagram notation, both of which have been

adopted by all of the other Ada projects. However, GRODY

was inadvertently designed in a way that required expending

considerable effort in restructuring very large software

modules into smaller ones so that they could be reused in

subsequent Ada projects. The mathematical algorithms from

GRODY continue to be widely used on all subsequent simulator

projects.
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• The FDAS project initiated the extensive use of

small, separately compiled software components as a mechanism

to modularize loosely coupled design elements and the use of

type packages and subsystems as design entities.

• The GOADA project formalized and expanded the use

of subsystems as a design entity, examined the best features

of the GRoDY and FDAS entity diagrams, and incorporated

these into an improved form of design notation; it was the

first project to develop a'compiled design.

• The UARSTELS project, which greatly increased the

use of Ada generic packages, was the first project to empha-

size during design the development of software components

that could be reused on subsequent projects without changes.

The incremental design approach used on the produc-

tion Ada projects meshes well with the existing preliminary

design review (PDR)/critical design review (CDR) approach

that has been utilized on traditional FORTRAN systems. The

modifications made to this approach that are Ada-specific

include the use of the entity diagram notation for both the

preliminary design report (for PDR) and the detailed design

document (for CDR). In addition, for the PDR most of the

Ada package specifications to be used in the system are com-

piled, and for the CDR the matching Ada package implementa-

tions with program design language (PDL) are developed and

compiled to the point that the code associated with the de-

sign can be linked into an executable image.

• Additional thought needs to be given to how to more

effectively exploit features of Ada to maximize the amount of

reusability of Ada software design components from one simu-

lation project to another. Consideration should be given as

to how to develop these design entities so that they are
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reusable on larger systems, such as Attitude Ground Support

Systems (AGSSs), and even on very large-scale systems, in-

cluding the Space Station project.
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SECTION 1 - INTRODUCTION AND BACKGROUND

1.1 _NTRODUCTION

This report is the first of a series of four reports de-

scribing the growth of Ada technology at Goddard Space Flight

Center (GSFC) and Computer Sciences Corporation (CSC). This

technology continues to evolve through an accumulating ex-

perience base gained from the development efforts associated

with several past and current Ada projects at GSFC/CSC.

This first report is primarily concerned with the evolving

understanding of software engineering issues related to the

use of Ada during the design phase of a project. Additional

reports are scheduled to follow, one covering the evolution

of Ada technology in implementation and one covering test-

ing. A final summary report on Ada project characteristics

will conclude the series.

The first section of the report (Section i) provides back-

ground information, including a brief description of each of

the Ada projects studied. Section 2 discusses the software

engineering issues related to designing a system in Ada and

how a growing understanding of these issues has been incor-

porated in the design documentation generated for each new

project. Section 3 presents the general project character-

istics of each of the Ada simulator systems, including Ada

experience and training of project personnel, Ada software

metrics, and effort and productivity measures. Section 4

summarizes the lessons learned in the design phases of all

of the Ada projects and presehts a number of recommendations

to designing future systems in Ada.

1.2 _AF.E_E0__

Since 1960, GSFC has relied heavily on FORTRAN in developing

software systems for mission analysis, satellite simulations,

5213
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and Attitude Ground Support Systems (AGSSs). In 1985, GSFC

and CSC began using the Ada programming language on two

different types of projects. The first project to use Ada

was an in-house, research-oriented project called the Flight

Dynamics Analysis System (FDAS). The FDAS project developed

a software reconfiguration tool for use by National

Aeronautics and Space Administration (NASA) analysts to ex-

periment with different algorithms for solving spacecraft

orbit and attitude analytical problems. Shortly after the

decision was made to use Ada as the implementation language

for FDAS, a second Ada project, called the Gamma Ray Obser-

vatory (GRO) Dynamics Simulator in Ada (GRODY), was started.

This experimental Ada development project for use as part of

the ground support system for the GRO satellite was the

first attempt at using.Ada for the type of mathematically

oriented system typically developed in this environment. A

corresponding version of this simulator, the GRO Simulation

Systems (GROSS), was developed in FORTRAN. The two simula-

tor projects, GRODY and GROSS, were developed in two differ-

ent languages to gain some understanding of the impact Ada

is likely to have on the development of software in the

flight dynamics area (Brophy et al., 1987; Godfrey and

Brophy, 1987, 1989; Seigle and Shi, 1988).

Both FDAS and GRODY can be characterized as research and de-

velopment efforts because they were nonoperational projects

for which a considerable amount of experimentation and/or

prototyping was utilized in their development. Since both

of these projects were first-time Ada projects for this

environment, they are considered here as "first generation"

Ada technology.

With the development experience gained from these first-time

Ada projects, the decision was made to use Ada as the imple-

mentation language on two production satellite simulation

5213
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projects to be used in support of Geostationary Operational

Environmental Satellite-I (GOES-I). The first of these two

projects is the GOES-I Attitude Dynamics Simulator (GOADA),

which began on May 30, 1987, and completed detailed design

on March 19, 1988. The second project is the GOES-I Telem-

etry Simulator (GOESIM), which began on September 5, 1987,

and completed detailed design on April 30, 1988. Unlike

GRODY, these projects are required to adhere very closely to

project schedules. They can be viewed as "second generation".

Ada projects because they have drawn heavily on the lessons

learned from both FDAS and GRODY in their design.

The most recent Ada project is also a production system to

be used in support of the Upper Atmosphere Research Satel-

lite (UARS)." The UARS Telemetry Simulator (UARSTELS) proj-

ect began on February 13, 1988, and detailed design was

completed on September i0, 1988. Because this project has

emphasized improving the designs of GOADA and GOESIM, it can

be viewed as a "third generation" Ada project.

Of the four satellite simulation projects, two are dynamics

simulators, and two are telemetry simulators. For the pur-

poses of comparison, the objective information presented in

Section 3 of this document will be drawn from these four

projects. For the analysis of this objective data, it is

necessary to first discuss how an understanding of the tech-

nical issues associated with designing software systems in

Ada has evolved over the history of all five Ada projects.

This type of subjective analysis is based on discussions and

interviews with developers from the five projects, from ques-

tionnaires filled out by thesedevelopers, and from published

literature on both Ada and software engineering practices,

in general.
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SECTION 2 - ADA DESIGN METHODOLOGY

2.1 0BJECT-ORIENTED DESIGN AND ENTITY DIAGRAMS

The GRODY team intensely investigated various design method-

ologies that could be used in developing a medium-sized Ada

software system, and eventually adopted a modified version

of object-oriented design (Agresti et al., 1986; Godfrey and

Brophy, 1987; Seidewitz and Stark, 1986). This decision con-

tinues to exert a strong and growing influence over subse-

quent Ada projects and, as such, represents one of the more

important contributions GRODY has made to the evolution of

Ada technology at GSFC/CSC.

Closely related to the design methodology is the issue of the

representation of the design on paper. The previous design

study has noted that documenting an Ada design, in particular

when object-oriented design techniques are used, requires

different design products than typically used for FORTRAN

systems (Godfrey and Brophy, 1987). The object or entity

diagram notation introduced by GRODY for graphically repre-

senting Ada designs has been adopted by the subsequent Ada

projects, each of which has introduced further refinements

and enhancements to the graphic notation. These design dia-

grams will be used throughout this section to illustrate the

various points being made.

The GRODY team developed a notation for representing basic

Ada components based on ideas from George Cherry's process

abstraction methodology (PAMELA) (Cherry, 1985) and Grady

Booch's object-oriented design (Booch, 1983). Bubble/

rectangles (hub-tangles) are used to represent packages;

rectangles are used to represent subprograms; and parallel

lines are used to represent state data (Figure 2-1). These

symbols continue to be used on the current projects.

5213
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Figure 2-1. Example of Design Diagram From GRODY
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The major advantage of the graphic representation introduced

by GRODY is the ease of representing the design of an entire,

medium-sized project within a three-ring notebook, with a

simple notation that is easy to understand and draw by hand.

The hierarchical structure of a system is indicated by the

use of leveled diagrams, with off-page connectors illustrat-

ing the top-down relationships among components that span

page boundaries.

The FDAS team felt that additional information was needed on

these diagrams to specify the bottom-up relationships among

components that spanned page boundaries. For example, Fig-

ure 2-1 from the GRODY system description document illus-

trates that it cannot be determined from looking at the

design diagram what particular entities reference the opera-

tions Initialize_Error_Log, Terminate_Error_Log, and Update

Error_Log. This type of information is important because

the design notebook is, in reality, a medium for communica-

tion between developers. Thus, when the individual in

charge of developing Error_Logger adds, deletes, or modifies

any of the formal parameters associated with the three visi-

ble operations mentioned above, that individual knows what

components outside of his or her domain are affected and can

notify the individual(s) responsible for developing those

components. FDAS added this type of information to their

design notation by providing the page connector symbol and a

number that indicated the location of the component(s) that

reference the entity on the diagram (Figure 2-2).

The entity diagram notation introduced by GRODY has provided

a firm foundation for refinements and enhancements that have

been iucrementally introduced by subsequent Ada projects and

can be expected to further evolve as more advanced features

of Ada are adopted on subsequent projects.
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2.2

The idea of Ada subsystems, a very important design concept,

was introduced after GRODY. A subsystem in Ada is an ab-

stract entity that is composed of a number of Ada packages,

subprogram compilation unitS, and possibly other lower-level

subsystems (Booch, 1987). It is an abstract entity because

no specific Ada component is used to represent a subsystem.

A subsystem is analogous to a package because generally some

of the constituent components that make up the subsystem pro-

vide visible operations to users of the subsystem, whereas

other constituent components are hidden (Figure 2-3).

Subsystems were first used as a design entity in the FDAS

research project, and the concept was formalized and expanded

by the GOADA project. Subsystems were not used in GRODY be-

cause of the team's interpretation of what an object is in

object-oriented design. To GRODY, the Ada package was the

dehfacto implementation vehicle for objects. Thus, all ob-

jects were represented as a single package. If the object

were too large to be implemented in its entirety by a single

package, it could be decomposed into lower-level packages,

but the operations on the object were constrained to be

implemented within a single, top-level package. Thus, in

GRODY, an object always had a single package as its root.

Using this approach, the decomposition of an object into

lower-level packages required that the specifications of

these packages had to be tied to the root package through

one of the following:

I. Physically nested within the root package specifi-

cation

5213
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2. Implemented as library units or physically nested

within the root package specification or body but

accessed by components outside of the root package

via call-throughs

3. Implemented as package specifications that contain

Ada renames statements for indicatfng visible opera-

tions

Utilities, the entity in GRODY that illustrates approach (i),

is a package instantiation of Generic_Utilities composed of

a number of lower-level packages, including Math_Functions,

Linear, and Attitude_Math. These three math packages were

physically nested within the specification of Generic_

Utilities, and their operations could only be accessed

through the instance name Utilities, such as Utilities.Math_

Functions.Sin, Utilities.Linear.Unit_Vector, etc. With this

approach, all operations or services provided by the sum of

the constituent packages of the object have to be provided

within the single root package specification of the object,

even if those operations or services are organized into

lower-level packages. Thus, for Generic_Utilities, the

specifications for a total of 49 procedures and functions

were provided within the single package specification

Generic_Utilities.

A number of problems exist with this approach that were not

apparent to the GRODY team at the time the system was de-

signed (Clarke et al., 1980). The major problem addressed

in this section is that this approach does not scale-up well

from small programs (Booch, 1987). A utilities object de-

signed this way in a large-scale Ada system, such as the

Space Station, might contain several dozen math and other

utility-package specifications nested within'the specifica-

tion for the object Utilities and, therefore, hundreds of

L
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subprograms specified physically within this one large pack-

age. Since almost every component in such a system would

have to access one or more packages within Utilities, hun-

dreds of thousands of lines of Ada code would have to be

recompiled every time the slightest modification were made

to the specification of Utilities, even though that modifi-

cation may have been made for the benefit of only a few

packages within the entire system (such as changing the mode

of a single parameter within a single routine within one of

the nested package specifications). In structured design

terminology, such a system contains modules that are tightly

coupled (Myers, 1978).

In Build 1 of FDAS, the package Utility was designed just as

o_ GRODY in that its constituent packages were physically

nested within the package specification of Utility. How-

ever, by Build 2 of FDAS, Utility had evolved into the kind

of abstract entity described above (Figure 2-4). The four

packages nested within the package Utility were extracted,

renamed, and compiled as library units (Figure 2-5). The

package Utility itself was discarded, but the entity was

retained as a design concept. In other words, Utility be-

came a subsystem as defined by Booch (1987).

The problem with the design diagram from FDAS is that it is

not readily apparent from the diagram which entities are

packages and which are subsystems. The trailing underscore

in the name Utility_ was meant to indicate that it repre-

sented a collection of packages, with the convention that

each package in this collection would begin with this name

(i.e., Utility_Host_Command_Handler, Utility_Log_File_

Handler, etc.). However, this was found to be unnecessarily

restrictive because this forces verbose package names. (The

package Configuration_Management in the subsystem Flight

5213
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Computer Operating System described by Booch (1987) would

become Flight_Computer_Operating_System_Configuration_

Management.) What was needed was a different symbol to

easily distinguish packages from subsystems. Such a symbol

(an elipse) was introduced by the GOADA team (Figure 2-6).

The use of subsystems as a design entity has eliminated the

rationale for nesting Ada packages inside other Ada packages

and, as such, has eliminated the need for the use of subpro-

gram call-throughs. This, in turn, allows the design of

loosely-coupled, modular systems, enhances localization,

permits the development of verbatim reusable components, and

minimizes recompilation overhead associated with the inevi-

table changes that occur during development.

2.3 TYPE PACKAGES

Ada package specifications have proven to be useful mech-

anisms for modularizing the declaration of types and con-

stants that are used by various library units. Although

Types packages were used somewhat in GRODY, they were not

specified in the design documentation. This information was

deemed necessary by FDAS; therefore, Build 2 Types packages

were placed on those particular pages of the design notebook

where all or almost all of the entities on the page refer-

enced these packages (Figure 2-7). As a result, _t was easy

to determine which design components might be affected by a

chang_ in a particular Types package. On GOADA, a specific

symbol was introduced for the Types package, borrowed from

the symbol Booch (1983) uses to indicate the types exported

by a package. This technique has been adopted by GOESIM and

UARSTELS (Figure 2-8).

2.4 REUSABLE SOFTWARE COMPONENTS IN DESIGN

The GOADA project introduced the use of two vertical parallel

lines near the sides of a package or subprogram symbol to

5213
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Subprogram - a procedure or function

ReusableSubprogram(< 25%change)

External Subprogram - subprogram passed into a

generic instan_tion

Package - collection of logically reaated subprograms

Reusable Package (< 25% change)

Verbatim Reusable Package

Subsystem - collection of logicallyrelatedpackages

Type Package - a package containingtype definitionsonly

Task - concurrent or parallelprocess

Package StateMemory - localvariablesin a package

-- label

External Call - call to or from a routine not in the package

Control Flow -a call(alsodependence) _.

Data Flow -directionand descriptionof da_a

Gcnenc Instantiation-c_eatcsa copy of the code

2--8. Structure Diagram Notation Used on

Recent Ada'Project (UARSTELS)
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indicate that the component is being reused. The UARSTELS

project expanded on this idea by providing additional infor-

mation to indicate if a component is being reused with some

modifications (less than 25 percent change), or if it is

being reused verbatim, i.e., reused with no modification to

the source code of the component (Figure 2-8).

An increasing emphasis on the Verbatim reuse of Ada compo-

nents in design has resulted in additional symbols associated

with generic packages. The GRODY project introduced the use

of a dotted arrow to point from the instantiation of a gen-

eric package to the actual generic package that was used in

the instantiation. (An example of this from GOADA is shown

in Figure 2-9.) This is consistent with the idea that the

generic instantiation is dependent on the generic itself.

The GOADA project introduced the use of a dotted box to in-

dicate a subprogram that is passed as a parameter into a

generic instantiation. (Figure 2-10 shows example from

UARSTELS.)

The additional symbols for type packages, reused components,

generic packages, and generic instantiations continue the

evolutionary process of directly mapping an Ada design

entity into a specific type of Ada software component. This

evolution should simplify the developers' task of using the

design document to implement the design of the system.

2.5 COMPILED DESIGN

The GRODY project investigated the concept of developing

compilable design elements during the design phase of the

software development life cycle. However, only a small

portion of the system was actually compiled by the time of

the CDR. The majority of the package specifications were

compiled early in the implementation phase, including some

w
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Spacecraft Hardware Subsystem Structure

u

2.1.4 Simulation Scheduler.Dispatch_Event
2.2.1 AOCS.Sensor Processors
6.5 Database Manager. Route Update Request
6.6 Database Manager.Route Retrieve Request

(-2.,:,.,3

Etc.

I. I User Interface Manager
2.3.2 Attitude Dynamics
2.3.3 Spacecraft Environment

Etc.

o

Figure 2-9. Example of Generic Package and Instantiation

From GOADA Project
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Generic Coarse Sun Sensor

p

__L__

.Z ,

J
End Generic Coarse Sun Sensor

Figure 2-10. Design Diagram From UARSTELS Showing

Subprograms as Parameters for Generic
Instantiation
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Ada PDL. Most of the GRODY team members felt that this com-

pilation of software components and PDL should be considered

as a design activity, with the compiler being used essen-

tially as an interface and type-checking tool to verify con-

sistency across the project (Godfrey and Brophy, 1987).

This idea from GRODY of developing compiled design elements

during the design phase was adopted by all subsequent Ada

projects, and the concept has been expanded to include de-

velopment of a compiled design. This is a more rigorous

concept because the term here has been defined to mean that

all of the compiled design elements that make up the system

must be sufficiently complete such that the entire system

can be successfully linked into an executable image.

A design in Ada can be compiled to different levels of de-

tail:

i. Compilation of the specifications and implementa-

tions (bodies)of the packages within the system plus com-

pilation of the program driver. At a minimum, this requires

that the subprogram bodies implemented within the package

bodies contain a null; statement:

package body Generlc_Thruster is

.Q.

procedure Model (

Thruster_ID: in THRUSTER_ID_TYPE) is

begin

null;

end Model;

.o.

end Generic_Thruster;
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2. Same as (i) above, except each subprogram in each

package body is separated into individual files and compiled,

leaving behind in the package bodies only the stubs of these

subprograms:

package body Generic_Thruster is

procedure Model (

Thruster ID: in THRUSTER_ID_TYPE)

is separate;

end Generlc_Thruster;

separate (Generic_Thruster)

procedure Model (Thruster_ID:

is

in THRUSTER ID_TY?E)

begin

null;

end Model;

3. Same as (2) above, except commented out PDL state-

ments are included in the body of the subunits

4. Same as (3) above, except control statements are

compiled (loop ... end loop;, if ... then ... end if;, case

... end case;)

5. Same as (4) above, except commented out calls to

lower-level subroutines are included

6. Same as (5) above, except calls to lower-level sub-

routines are compiled

In practice, most of the newly designed software components

for GOADA, GOESIM, and UARSTELS have been compiled to the
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level indicated in (4) or (5) above. This provides inber-

face checking among all of the compilation units that com-

prise individual packages and syntax checking of the control

statements within subunits. However, utilizing the compiler

to check interfaces across package boundaries requires com-

piling to the level indicated in (6) above. In this case,

all calls made to subprograms within lower-level packages

referenced by a particular unit are coded and compiled.

This requires that all variables used as actual parameters

(arguments) in subprogram calls must be declared, and the

types of these variables must be identical to the types of

the formal parameters associated with the called subpro-

grams. Since most of the executable code in non-terminal

subprograms often consists of control structures wrapped

around subprogram calls, many developers felt that units

compiled to this level would be (for the most part) imple-

mented before the implementation phase of the project had

actually started. As a result, most developers indicated

that a design should be compiled to the level that included

compiled control statements within the PDL. The average

level to which a design should be compiled, by project is

GRODY GOADA GOESIM UARSTELS

3 4.4 5.2 4

The introduction by the GRODY project of the concept of de-

veloping compilable design elements during design has been

expanded by the production simulator projects to include the

development of a compiled design.

2 •6 PROJECT REVIEWS

All four of the simulator projects have followed the tradi-

tional approach utilized on FORTRAN systems of having two

r
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formal design reviews, a PDR, and a CDR. Presently no reason

appears to suggest that a different approach is required in

this environment for an Ada project although consideration

should be given to making some modification to the time these

reviews are held during the project life cycle, as discussed

below.

2.6.1 PRELIMINARY DESIGN REVIEW

Except for the specific references to structured design and

FORTRAN language constructs, all four of the simulator proj-

ects followed the steps outlined in the Recommended Approach

To Software DeveloPment (McGarry et al., 1983) during pre-

liminary design. Thus, for each project the high-level

architecture of the system was defined, and each top-level

subsystem was refined to two additional levels of abstrac-

tion. The entity diagram notation was used to represent

this design within the preliminary design report, which is

the primary product of preliminary design. For the three

production simulator projects, the Ada package specifications

defined for theentity diagrams were designed, coded, and

compiled, a process that is specific to using Ada. Finally,

the design was subjected to formal management and technical

review through the PDR. All four task leaders of the simula-

tor projects indicated that the PDR was helpful as a part of

the design phase of the software development life cycle.

2.6.2 CRITICAL DESIGN REVIEW

The development of a detailed design for each of the produc-

tion Ada simulators also followed the traditional approach

used on the FORTRAN systems, with the major exception that

the design was compiled by the time of the CDR. The primary

product developed during this phase was the detailed design

document, which was produced by continually refining into

greater detail the entity diagrams generated for the
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preliminary design document. The other major product of de-

tailed design was the code and PDL produced during develop-

ment of the compiled design. For this part of the design

phase, the package specifications compiled before the PDR

were used as input to an in-house utility called Package_

Helper, which automatically generated compilable package

bodies and compilable subprogram subunits as described above.

The bulk of the remaining design work then involved develop-

ing PDL within each of the subunits, and then compiling these

units into the appropriate Ada library. Once these compo-

nents were compiled, the entire system was linked into an

executable imag e .

The CDR appears to be a suitable, sufficient approach to

formal review of the products of the detailed design effort

by management and technical personnel. However, a number of

developers expressed the opinion that the CDR on their proj-

ect was held too soon after the PDR. These developers sug-

gested that the schedule pressure to produce large amounts

of compilable code and PDL by the time of the CDR did not

allow a sufficient amount of time to think through the de-

tails of the design.

m
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SECTION 3 - PROJECT CHARACTERISTICS

3.1 PLANS AND ESTIMATES

AS a part of the planning process, task personnel for each

of the three production simulators estimated the total staff

effort hours that would be required for the duration of the

project based on prior experience with FORTRAN projects and

the manager's guidelines for the Flight Dynamics area.

During the requirements analysis and design phases of the

project, GOADA required 8,144 hours, or 35.4 percent of the

total hours estimated; GOESIM required 4,218 hours, or

32.6 percent of the total hours estimated; and UARSTELS re-

quired 3,008 hours, or 29.5 percent of the total hours

estimated for the project. In comparison, the manager's

guidelines, develope_ in the Flight Dynamics area for plan-

ning FORTRAN projects, suggest that the staff hours needed

for requirements analysis and design should be 30 percent of

the total effort for a project. The 30 to 35 percent esti-

mated figure for the three Ada projects is similar to the

30 percent figure used for the FORTRAN projects, but this

may be because these Ada projects were planned using the

same estimation techniques applied to FORTRAN projects and

required to adhere to these planned schedules. For the GOADA

project, most developers felt that insufficient effort was

allowed for the detailed design, and those portions of the

system that had not been fully designed by the time of the

CDR were completed early in the implementation phase. There-

fore, the 35 percent estimated effort for design for GOADA

is likely to be understated.

The Flight Dynamics area also traditionally estimates an-

ticipated life cycle phase start and end dates as a part of

project planning. Task personnel on the three production

simulator projects each took a different approach in
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estimating what amount of calendar time the design phase

would require as a percentage of the project life-cycle. On

the GOADA project, 36.5 percent of the elapsed time of the

project was planned for requirements analysis and design.

On GOESIM and UARSTELS, this percentage was 46 percent and

44 percent, respectively. By CDR, the planned dates had

changed somewhat. GOADA had replanned, slipping the end date

of system test by 1 month. GOESIM went to CDR 2 weeks late

but adhered to the remainder of the schedule. UARSTELS went

to CDR as originally planned. As it turned out, all three

projects eventually allocated similar percentages of elapsed

time to the requirements analysis and design phases: GOADA,

43 percent; GOESIM, 49 percent; and UARSTELS, 44 percent.

In comparison, the guidelines developed for FORTRAN allocates

35 percent of the time scheduled for requirements analysis

and design. This is i0 to 15 percent lower than what was

experienced on the three Ada projects as of CDR. It will be

interesting to see how or if the schedule changes after the

implementation phases are completed on each of the three

projects.

3.2 DEVELOPMENT ACT_V_TIES THROUGH DESIGN

The profiles of these projects differ in terms of the dis-

tribution of effort among the following categories of devel-

opment activities up to the time of the CDR:

• Predesign (PREDES)

• Create design (CREDES)

• Read and review design (RDREVDES)

• Coding (CODE)

• Other activities (training, meetings, technical

management (OTHER)

w
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• Support (Program management, technical publications,

librarian, secretarial) (SUPPORT)

The research and development orientation of GRODY is apparent

frGm this project's activity profile (Figure 3-1). Nearly

half (48.3 percent) of the effort was charged to the OTHER

category, much of which included Ada training and work on

developing a design methodology suitable for a system of

this size.

The next three projects that followed in time were the GOADA,

GOESIM, and UARSTELS production projects. Since most of the

technical groundwork on design issues related to Ada had

been worked out by GRODY, these projects were able to devote

the largest percentage of their activity to actually creating

the design, and this percentage was very similar across all

thr_e projects--41.1 percent for GOADA, 42.9 percent for

GOESIM, and 38.3 percent for UARSTELS (Figure 3-1).

3.3 REUSE

The GRODY project had no flight dynamics software written in

Ada to draw from and, as such, were not able to reuse any Ada

code; the 3.7 percent reuse reported by GRODY was limited to

imported FORTRAN procedures obtained from a previous dynamics

simulator (Figure 3-2). For the production Ada simulator

projects that followed, a Concerted effort was made to reuse

this Ada software from GRODY. The component reuse percent-

ages for the later projects were 42 percent for GOADA,

30 percent for GOESIM, and 50 percent for UARSTELS (Fig-

ure 3-2).

Unfortunately, the GRODY team did not well understand design

considerations necessary for the _mplementation of Ada soft-

ware components that could be readily reused on future Ada

projects. This problem can be viewed in part as a result of
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Figure 3-1. Distribution of Effort Over Activities

During Design Phase
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Figure 3-2. Component Reuse on Ada Simulator Projects
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the team's lack of the use of subsystems as a design entity

and an inappropriate use of nesting to enforce component

visibility (Clarke et al., 1980). As a result, during the

development of GOADA's compiled design, a considerable

amount of effort was needed to extract software components

from the heavily nested components of GRODY and then to re-

construct these components into smaller, individual library

units. This extra effort can be seen in Table 3-1, which

shows the percentage of the total effort during the design

phase spent on four special activities: documentation,

enhancement and optimization, reuse of software, and rework

needed as the project progressed through design. During the

design phase, 8.1 percent of the total effort during the

design phase was spent on reuse of software for the GOADA

project as compared to 4 percent for the GOESIM project.

The effort expended on reuse increased somewhat on UARSTELS

(5.7 percent), primarily because many of the packages avail-

able from GOADA were modified into generic packages.

Table 3-1. Percentage of Total Effort Spent on Special

Activities During Design

Documentation

Enhancement and

Optimization

Reuse of Software

Rework

GRODY GOADA GOESIM UARSTEL$

ND* 19.7 11.8 13.3

ND 4.4 5.8 .9

ND 8.1 4.3 5.7

ND 1.7 3.5 .8

*ND = no data available

The GOESIM project planned to reuse many of the components

un-nested by the GOADA developers. However, as apparent by

the effort needed to rework software, some project-specific
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dependencies were found within many of these reused compo-

nents. For example, the Spacecraft_Ephemeris component from

the GOADA project logs error data by calling User_

Interface.Receive_Error. Since telemetry simulators are

batch programs that typically do not have a user interface,

all of these calls had to be modified to calls to the Error_

Collector.

3.4 UTILIZATION OF CPURESOURCES IN DESIGN

Traditional FORTRAN projects utilize text editors on a com-

puter system to enter subprogram PDL, COMMON blocks, and

NAMELISTs before PDR and CDR. The FORTRAN compiler is not

utilized during design on these projects. Compared to a

traditionai FORTRAN project, central processing unit (CPU)

resource consumption can be expected to be much higher during

the design phase of an Ada project that generates a compiled

design. Two major reasons for this increase are

• The Ada compiler is being used extensively during

the design phase.

• Ada compilers are typically large, complicated pro-

grams that require substantial CPU resources.

Figure 3-3 shows the profile of CPU usage over the design

phases of the GOESIM and UARSTELS projects. The first,

smaller peak on the UARSTELS project occurred near the PDR.

The second peak on UARSTELS occurred several weeks before

the CDR because the project was somewhat ahead of schedule.

The large peak on GOESIM occurred near the CDR.

r
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Figure 3--3. Profile of CPU Utilization

on GOESIM and UARSTELS
During Design
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3.5 SOFTWARE METRICS

The development of a linkable, compiled system during the

design phase in Ada is a process similar to implementation

since a considerable amount of attention must be given to

details that previously have not been addressed by tradi-

tional FORTRAN design teams. As a result, it makes sense to

begin tracking the progress of Ada software projects early

in the design phase, using software metric tools that tradi-

tionally have been utilized only during implementation and

testing.

One major advantage of developing a compiled design in an Ada

project is that it represents a clearly defined milestone.

If a consistent definition of the term is adopted across all

Ada projects, existing effort data and software metrics .such

as source lines of code (SLOC), delivered source instructions

(DSI) or component counts can be used to compute productivity

during design. These productivity measures can then be used

to determine, for example, if reported levels of software

component reuse in design are correlated with actual in-

creases in productivity during design, if higher productivity

in design is correlated with a reduction in overall system

cost, etc.

The GOADA, GOESIM, and UARSTELS projects, all produced com-

pilable designs and were compiled to approximately the same

level of detail. (The GRODY project did not develop a com-

piled design.) Thecompiled designs of the production

simulators are referred to as Build 0. Although the GRODY

team developed a Build 0 (well after CDR), major parts of

the system had not been designed yet, and the system could

not be linked.
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Table 3-2. Software Measures for Build 0

GRODY GOADA 1 GOESIM UARSTELS

SLOC 19,513 90,507 52,831 49,836

LOC&C ND 67,684 39,134 39,209

LOC (DSI) ND 36,979 19,338 21,350

Comments ND 30,705 19,796 17,859

Blank lines ND 22,823 13,697 10,627

Statements ND 12,500 7,212 8,224

Declarative ND 7,000 4,282 4,636

Executable ND 5,500 2,930 3,588

Number of com- 118 592 410 443

ponents

1The data on GOADA was collected about 10 days after the

CDR; about 2,500 SLOC had already been removed from the

Build 0 library into the Digital Equipment Corporation (DEC)

Configuration Management System (CMS) library. These 2,500
SLOC are not included in the numbers given for GOADA.

D_finition of Terms

SLOC

LOC&C

LOC

DSI

comments

blank lines

Source lines of code => a count of carriage

returns (<CR>) in the file

Lines of code plus comments => lines

containing actual code and comment lines

Lines of code => lines containing actual code

Delivered source instructions => same as LOC

Lines that begin with comment token, "--"

Lines that contain only a <CR>

Considerable care must be taken in evaluating lines of code

as a software productivity measure, particularly for a com-

piled design. For example, the DSI may not be an appropriate

measure for the design phase since it excludes all blanks and

comment lines. Because a large fraction of the PDL for these
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systems consists of comments, DSI can be expected to somewhat

underestimate the size of a compiled design. Support for

this idea can be seen when blanks, comments, and executable

statements, as a percentage of SLOC for Build 0 of. GOADA and

GOESIM, are compared with the same percentages for the com-

pleted GRODY project.

Table 3-3. Line Count Profiles

Blank lines

(percent)

Comments

(percent)

LOC (DSI)

(percent)

LOC&C

(percent)

Final Build Build 0 at CDR

GRODY GOADA GQESIM UARSTELS

26.0 25.2 25.9 21.3

27.8 33.9 37.5 35.8

46.2 4O.9 36.6 42.9

i00.0 I00.0 . I00.0 I00.0

74.0 74.8 74.1 78.7

Note that the percentage 0f blank lines is virtually the

same across GRODY, GOADA, and GOESIM, about 25 to 26 percent.

However, for the nonblank lines, the ratio of DSI to com-

ments for the combined GOADA and GOESIM projects at Build 0

is 1.12, whereas this ratio is 1.66 for the final build of

GRODY, nearly 50 percent higher. This difference can be ex-

pected because during implementation, some commented PDL

statements are modified into executable code, and additional

executable statements are being added to provide the func-

t{onality summarized in comments written during design.

Interestingly, approximately 60 to 75 percent of the esti-

mated final SLOC had been completed by the time of the

5213

3-11



CDR (Table 3-4). However, as mentioned above, this code

contains a considerable fraction of commented PDL statements

whose syntax, semantics, and logic are not subject to the

rigorous examination of the Ada compiler. I_ other words,

the effort involved in developing the remaining 25 to

40 percent of the system during implementation and testing

can be expected to be greater per line of code than the

effort involved during design. This hypothesis will be

examined in the second report in this series.

Table 3-4. Estimated SLOCs Completed as of CDR

SLOC at CDR

Estimated SLOC for final

system as of October 24, 1988

Percentage recent estimated

SLOC completed

GOADA GOESIM UARSTELS

90,507 52,800 49,836

145,000 78,000 65,000

62.4% 67.7% 76.7%

3.6 PRODUCTIVITY

The total effort for developing Build 0 for the four simula-

tor projects is shown below:

Table 3-5. Total Effort for Build 0

Staff-hours

Staff-days I

GRODY GOADA GOESIM UARSTELS

6,430.0 8,144.0 4,218.0 3,008.0

803.8 1,018.0 527.3 376.0

IA staff-day is 8 staff-hours.

z

m
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The average productivity measures for each of these projects

is indicated below.

•T_ble 3-6. Productivity Measures During Design

w

w

GRODY GOADA GOESIM

SLOC/staff-day 24.3 88.9 100.1

LOC&C/staff-day ND 67.8 74.2

DSI/staff-day ND 36.3 36.7

Statements/staff-day ND 12.3 13.7
Declarative ND 6.9 8.1

Executable ND 5.4 5.6

Components/staff-day 0.15 0.58 0.78

132.5

104.3

56.8

21.8
12.3

9.5

1.18

3.7 ADA EXPERIENCE OF DESIGN TEAM

When the number of years of professional experience in de-

veloping software in any language are considered for the Ada

developers, these four simulation projects appear very

similar, as shown in Table 3-4. Another similarity is that

the assistant technical representatives (ATRs) and the tech-

nical managers associated with each project all have had

experience in developing software in the flight dynamics

area. On the other hand, for the design phase of these

projects, the percentage of developers who have had previous

experience in the application area varies widely, as shown

in Table 3-4. Similarly, this table also shows a wide vari-

ation as to the percentage of design personnel who have had

previous professional Ada software development experience.

w
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Table 3-7. Experience of Ada Developers

Software Development

Experience (years)

Ratio of Personnel

Experienced in

Application

Ratio of Personnel

Experienced in Ada

GRODY GOADA GOES IM UARSTELS

4.7 5.9 5.7 5.5

1/7 2/7 1/4 3/3

0/7 3/7 1/4 1/3

As shown in Table 3-8 below, only the GOADA project had a

technical manager who has had actual Ada software experience.

Both GOADA and UARSTELS were staffed with a task leader who

has had previous satellite simulation development experience.

Only UARSTELS was staffed with a task leader with previous

Ada experience previous satellite simulation development ex-

perience, and Ada experience (including satellite simulation

development experience in Ada).

Table 3-8. Ada Experience of Project Management

Ada Experience of

Technical Manager

Application Area Ex- no

perienced of Task

Leader

Ada Experience of Task no

Leader

GRODY GOADA GOESIM UARSTELS

no yes no no

yes no yes

no no yes

w
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This general lack of previous Ada experience during the de-

sign phase of these projects is due to the relatively recent

introduction of Ada and the even more recent introduction of

a production-quality Ada compiler for the VAX. The few de-

velopers who have had previous Ada experience were drawn

from the first two GSFC/CSC Ada projects. The three devel-

opers on GOADA with Ada experience came from FDAS; the one

developer on GOESIM with Ada experience came from GRODY; and

the one developer (also the task leader) on UARSTELS with

Ada experience worked on both FDAS and GOADA. The technical

manager of GOADA received his Ada experience from develop-

ment work on GRODY.

Since each Ada project gains from both the mistakes and the

technical advances made by previous Ada projects, it is dif-

ficult to separate the effect of individual team members'

application area experience, training, and professional Ada

development experience from the effect produced by this ac-

cumulating project legacy. Even so, the one project charac-

teristic that appears to have a major effect on productivity

is the presence of a technically strong task leader, with

professional Ada development experience in the application

area.

3.B TRAINING

The GRODY team had the widest range of different types and

forms of training in Ada. Of these, the lectures in PAMELA

(Cherry, 1985), the classroom lectures on Ada syntax and

semantics, and the Alsys Ada video training course were rated

as having only moderate usefulness. In contrast to these,

the practice project was rated as extremely useful by almost

everyone on the team, and having actual project experience
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as a form of training was also highly rated (OJT = on-the-

job-training):

Average rating of the usefulness of each type of train-

ing provided on GRODY, on a scale of 1 (not useful) to 9

(extremely useful):

PAMELA Lecture _ Books OJT Practice Project

4.4 5.3 5.4 7.0 8.3 8.9

The GOADA team was provided with classroom lectures on the

syntax and semantics of Ada, object-oriented design, and the

use of software development tools. The average rating of

the training they received was only slightly higher than

that given by the GRODY team for their lectures:

Average rating of the usefulness of the training provided

on GOADA, on a scale of 1 (not useful) to 9 (extremely

useful) :

Lecture Sooks

6.1 6.1

One particular criticism of the GOADA training was that the

timing of the lectures was not well coordinated with the

project schedule. For example, several developers suggested

that the lectures on the DEC software development tools

should have been late in the lecture series rather than

early.

Even with the less than enthusiastic rating of classroom

lectures given by these two teams, most developers across

all the simulator projects recommended that 40 or more hours

of classroom lectures should be provided on the Ada language:

Average number of recommended hours of classroom/lecture

Ada training by project:

GRODY GOADA GOESIM _ARSTELS

53 43 28 53
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SECTION 4 - SUMMARY AND RECOMMENDATIONS

Before these initial Ada projects, almost all software at

GSFC/CSC has been developed using FORTRAN, a process that is

well understood in the Flight Dynamics environment. Con-

versely, the development of software systems in Ada for the

types of applications found in this environment is a not yet

as fully an understood process. An understanding of how to

apply Ada technology more effectively in the Flight Dynamics

environment can be expected through the accumulated experi-

ence gained from these projects and from future Ada projects.

The transition from develoDina software systems in FORTRAN

to develoDina systems in Ada is an evolutionary process.

When the first Ada projects were started, no really well

defined design methodology existed for use on production-

level software systems that allowed the design of systems

that effectively utilized the data abstraction capabilities

of the Ada language. As a result, an object-oriented design

methodology and a graphical design notation were developed

in-house for use on Ada systems; this design technique has

been incrementally enhanced and refined by subsequent Ada

projects. The lack of a subsystem concept for the GRODY

project resulted in the development of a tightly coupled

system of large compilation units that were not directly

reusable by follow-on Ada projects. The production simula-

tor projects all utilized the subsystem concept in their

designs and extended the GRODY project's recommendation to

produce compilable package specifications in developing a

compiled design. The project UARSTELS greatly increased the

use of Ada generic packages in design and was the first

project to emphasize during design the development of soft-

ware components that could be reused on subsequent projects

without changes.

4-1
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The design team for an Ada project should have a mixture of

personnel with different areas of expertise and experience.

These areas include flight dynamics, Ada software system

development, mathematics, and specific application-area ex-

perience. In particular, the presence of a technically

strong _psk l@_4er with professional Ada development experi-

ence in the application area may be the sinqle most important

factor in producing a well designed system within schedule

and budget.

The incremental design approach uzed on the production Ada

ploiects meshes well with the existina PDR/CDR approach that

has been utilized on traditional FORTRAN systems. Some con-

sideration should be given to extending the length of the

detailed design phase to compensate for the additional effort

needed to generate the large amount of code associated with

developing a compiled design.

All developers expressed a desire for formal training in Ada

syntax and semantics, Ada software development tools, and

Ada design methodologies. Many of these developers suggested

that this training should be spread out over time, instead of

a concentrated training presented over a few days. In addi-

tion, this training should be carefull7 coordinated with the

project schedule to maximize its effectiveness, particularly

for training in software development tools.

Additional thouaht needs to be given to how to more effec-

tively exploit features of Ada in a manner that will maximize

the amount of reusability of Ada software design ¢0mp0nents

from one simulation project to another. Consideration should

be given as to how to develop these design entities so that

they are reusable on larger systems, such as AGSSs, and even

on very large-scale systems, including the Space Station

project.
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ATR

CDR

CMS

CPU

CSC

DEC

DSI

FDAS

GOAPA

GOES- I

GOESIM

GRO

GRODY

GROSS

GSFC

NASA

PAMELA

PDL

PDR

SLOC

UARS

UARSTELS
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Attitude Ground Support System

assistant technical representative

critical design review

Configuration Management System

central processing unit

Computer Sciences Corporation

Digital Equipment Corporation

delivered source identification

Flight Dynamics Analysis System

GOES-I Dynamics Simulator

Geostationary Operational Environmental
Satellite-I

GOES-I Telemetry Simulator

Gamma Ray Observatory

GRO Simulator in Ada

GRO Simulator Systems

Goddard Space Flight Center

National Aeronautics and Space Administration

Process Abstraction Methodology

program design language

preliminary design review

source lines of code

Upper Atmosphere Research Satellite

UARS Telemetry Simulator
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